c-Abl Inhibition Delays Motor Neuron Degeneration in the G93A Mouse, an Animal Model of Amyotrophic Lateral Sclerosis

نویسندگان

  • Ryu Katsumata
  • Shinsuke Ishigaki
  • Masahisa Katsuno
  • Kaori Kawai
  • Jun Sone
  • Zhe Huang
  • Hiroaki Adachi
  • Fumiaki Tanaka
  • Fumihiko Urano
  • Gen Sobue
چکیده

BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive death of motor neurons. Although the pathogenesis of ALS remains unclear, several cellular processes are known to be involved, including apoptosis. A previous study revealed the apoptosis-related gene c-Abl to be upregulated in sporadic ALS motor neurons. METHODOLOGY/FINDINGS We investigated the possibility that c-Abl activation is involved in the progression of ALS and that c-Abl inhibition is potentially a therapeutic strategy for ALS. Using a mouse motor neuron cell line, we found that mutation of Cu/Zn-superoxide dismutase-1 (SOD1), which is one of the causative genes of familial ALS, induced the upregulation of c-Abl and decreased cell viability, and that the c-Abl inhibitor dasatinib inhibited cytotoxicity. Activation of c-Abl with a concomitant increase in activated caspase-3 was observed in the lumbar spine of G93A-SOD1 transgenic mice (G93A mice), a widely used model of ALS. The survival of G93A mice was improved by oral administration of dasatinib, which also decreased c-Abl phosphorylation, inactivated caspase-3, and improved the innervation status of neuromuscular junctions. In addition, c-Abl expression in postmortem spinal cord tissues from sporadic ALS patients was increased by 3-fold compared with non-ALS patients. CONCLUSIONS/SIGNIFICANCE The present results suggest that c-Abl is a potential therapeutic target for ALS and that the c-Abl inhibitor dasatinib has neuroprotective properties in vitro and in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuron-specific antioxidant OXR1 extends survival of a mouse model of amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis is a devastating neurodegenerative disorder characterized by the progressive loss of spinal motor neurons. While the aetiological mechanisms underlying the disease remain poorly understood, oxidative stress is a central component of amyotrophic lateral sclerosis and contributes to motor neuron injury. Recently, oxidation resistance 1 (OXR1) has emerged as a critica...

متن کامل

Effect of genetic background on phenotype variability in transgenic mouse models of amyotrophic lateral sclerosis: a window of opportunity in the search for genetic modifiers.

Transgenic (Tg) mouse models of FALS containing mutant human SOD1 genes (G37R, G85R, D90A, or G93A missense mutations or truncated SOD1) exhibit progressive neurodegeneration of the motor system that bears a striking resemblance to ALS, both clinically and pathologically. The most utilized and best characterized Tg mice are the G93A mutant hSOD1 (Tg(hSOD1-G93A)1GUR mice), abbreviated G93A. In t...

متن کامل

Treatment with an antibody directed against Nogo-A delays disease progression in the SOD1G93A mouse model of Amyotrophic lateral sclerosis.

Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegenerative disorder in which motor neurons in the spinal cord and motor cortex degenerate. Although the majority of ALS cases are sporadic, mutations in Cu-Zn superoxide dismutase-1 (SOD1) are causative for 10-20% of familial ALS (fALS), and recent findings show that a hexanucleotide repeat expansion in the C9ORF72 gene may account for >30%...

متن کامل

The CB2 cannabinoid agonist AM-1241 prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis when initiated at symptom onset.

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron loss, paralysis and death within 2-5 years of diagnosis. Currently, no effective pharmacological agents exist for the treatment of this devastating disease. Neuroinflammation may accelerate the progression of ALS. Cannabinoids produce anti-inflammatory actions via cannabinoid receptor 1 ...

متن کامل

The potential of GPNMB as novel neuroprotective factor in amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) is an incurable and fatal neurodegenerative disease characterized by the loss of motor neurons. Despite substantial research, the causes of ALS remain unclear. Glycoprotein nonmetastatic melanoma protein B (GPNMB) was identified as an ALS-related factor using DNA microarray analysis with mutant superoxide dismutase (SOD1(G93A)) mice. GPNMB was greatly induced...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012